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Model for growth of binary alloys with fast surface equilibration
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We study a simple growth model fod ¢ 1)-dimensional films of binary alloys in which atoms are allowed
to interact and equilibrate at the surface, but are frozen in the bulk. The resulting crystal isdnggdiropic
Correlations perpendicular to the growth direction are identical dedamensionakwo-layer system in equi-
librium, while parallel correlations generally reflect the dynamics of an Ising system. For stronger in-plane
interactions, the correlation volumes change from oblate to highly prolate shapes near a critical demixing or
ordering transition. Ird=1, the critical exponent relating the scaling of the two correlation lengths varies
continuously with the chemical interactiori$1063-651X97)04504-2

PACS numbe(s): 05.70.Jk, 68.55-a, 75.10.Hk

[. INTRODUCTION vz of thed-dimensional Ising modelz(being the appropriate
dynamical critical exponejt
Growth by vapor deposition is a highly effective process Since in the above models the local adsorption probabili-_
for producing high quality materials. The resulting films can{ies depend on the surface states, some form of fast redistri-
show properties that are very different from systems in bulkution of atoms is implied. One possibility is the mixing of
equilibrium[1,2]. For example, in some binary alloja], the particles in the gas phase prior to adsorption. However, it is

; ; ; asy to envision conditions where the local adsorption prob-
deposne'd atqms are highly moblle as Iong.as on the Surfacgbilities are determined by densities in the gas pliegg, in
but relatively immobile once incorporated in the bulk. As a

It th f fluctuations that are formed during th ballistic deposition In such cases, rapid desorption from
result, the surtace fluctuations r r urng e, tavorable locations on the surface may provide the appro-
growth process are frozen into the bulk. A characteristic S'g'priate redistribution mechanism. However, given the high

nature of suctimetastablgphases isnisotropiccorrelations — ity of particles on the surface, surface diffusion is an-

that are related to the growth direction, and are absent igher important process. In this case, it is essential to also
bulk equilibrium. o include the interactions between the diffusing surface par-
A number of models for composite film growth have beenjcles which eventually leads to formation of domains and
introduced in the pag3—8|. Generally in these models, the jslands.
probability that an incoming atom sticks to a given surface |n this paper, we include the interactions between atoms
site depends on the state of neighboring sites in the layasn the top layer, which is assumed to equilibrate completely
below. Once a site is occupied, its state does not change artlgy surface diffusionor desorption-resorption mechanisms
more, and thus the surface configuration becomes frozen ibefore another layer is added. Such an assumption is realistic
the bulk. Such growth rules are equivalent (8iochastit  only if the growth rate is much slower than characteristic
cellular automata, where each site is updated in parallel asequilibration times of the surface layer. Its limits of validity
function of the states of its neighbors. Subsequent states afre discussed in the conclusion; in particular, it is likely to
the cellular automaton correspond to successive layers in thereak down in the vicinity of a critical point, where the sys-
crystal. tem undergoes a continuous phase transition from chemically
It is in general not possible to calculate exact correlationdisordered to either phase separatfat attractive interac-
functions for such(honequilibrium growth processes. The tions), or sublattice ordere¢for repulsive interactions We
exception occurs in special cases where the growth rules saghow that this model satisfies detailed balance, and can
isfy a detailed balance condition, relating their stationary betherefore be analyzed with methods from equilibrium statis-
havior to an equilibrium system of one lower dimensf@h tical physics. While the resulting critical behavior is similar
However, it can be shown thatdf-dimensional probabilistic to the previously studiedcellular automata models, the
cellular automata with two states, and up-down symmetry;‘temporal” correlations in B 1 dimension are very different
undergo a symmetry breaking, their critical behavior is idenfrom those obtained from the correspondifmarticle non-
tical to the corresponding Ising model in equilibriuf®].  conserving or Glaubgmdynamical Ising model10]: On ap-
Correlations in time are then equivalent to those generategroaching zero temperatufee., the critical temperature of
by Glauber dynamics of the Ising system Gtauber dynam- the (1+1)-dimensional systein the diverging vertical and
ics the local states evolve with probabilities consistent withhorizontal correlation lengths are related by an expoent
the changes of the Boltzmann weight. However, no locathat is, in general, larger than the Glauber value of 2, and
conservation law of particle number is imposed in such dyvaries continuously with the ratio of the perpendicular and
namics. ¢+ 1)-dimensional crystals grown according to the parallel coupling constants. In all dimensions, if the ratio
rules of these cellular automata, therefore, have an ordetetween the two coupling constants is larger than unity, the
disorder phase transition with correlations perpendicular tawo correlation lengths cross at some temperature, changing
the growth direction characterized by the critical exponenthe shapes of typical correlated clusters from ob{atehigh
v, and those parallel to the growth direction by the exponengrowth temperaturgsto prolate (near the critical point
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1. MODEL

The model is defined as follows We consider a
(d+1)-dimensional hypercubic lattice and two kinds of at-

oms A and B. Let exa, €ap, and egg be the interaction
energies between neighboring atoms of types AB, and
BB, respectively. When each layer hak sites, there are

The two-layer Hamiltonian occurring in E¢3) can be
rewritten in terms of Ising variables by introducing the spin
stateso=+1 for an A atom, ande=—1 for a B atom.
Using J=(ean—2€apt€gp)/4 and h=3(eap— €pp)/4
+(ua— mg)/2, and neglecting an additive constant, the two-
layer Hamiltonian becomes

2N possible configurations for a layer. The energy cost for

adding a layer of configuratiop on top of one with configu-
ration« is the sum of the internal enerdy, of the new layer
and of the interaction energy,, with the previous layer.
These energies are just the sums of all local bogpde-
tween nearest neighbaijs within the new layer and between
the two layers, respectively. In additiols, contains a
chemical potentiali N+ ugNg that is related to the partial
pressures oA andB atoms in the gas phase.

Since we assume that the top layer is in thermodynami

equilibrium, the conditional probability that it is in configu-
ration y, given configuratiorw for the layer below, is

W.ya: qu_B(Ey+Vay)] , (1)

25 exfl — B(Es+V,5)]

N
HW:‘Jl(% (Ui a)o-](a)+o-i(7)a-](y>)+‘]\\; O.i(a)a.i()’)

N
+hZ1 (ol + 0", (5)

Where we have also allowed for the possibility of anisotropic

couplings parallel and perpendicular to the growth direction.
(i,j) denotes a pair of nearest-neighbor sites within a layer.
As a function of the “field” h, there is a first-order transition
betweenA andB rich phases. Here, we focus on the coex-
istence line ath=0, which terminates at a critical point,
where the correlation lengths diverge both parallel and per-
pendicular to the growth direction. Fdr=0, the Hamil-

whereB=1/kgT; T is the temperature at which the crystal is tonian is invariant under the reversal of the signs of all spins.
grown, andkg is the Boltzmann constant. After adding many This means that on an average an equal numbek ahd

layers, the probability for finding a given configuratignis
determined by the stationarity condition

P,=> W,,P,, (2)

which has the solution

; ex — B(E,+E,+V,,)] E exd — BH.,]
P.= = :
;V exl — B(Es+E,+V;,)] ;V exd — BH ,]

&)

B atoms are deposited. If the coupling constahtsand J;

are positive, atoms of the same kind attract each other, and
the two types of atoms phase separate below the critical tem-
perature. IfJ, andJ; are both negative, and if the lattice
structure allows a unique ground state, the low-temperature
phase is “antiferromagnetic” witlh andB atoms sitting on
different sublattices. These two cases can be mapped onto
each other by reversing the sign of the coupling constants,
and of the spins on one of the sublattices.Jjk0 and

J, >0, the low-temperature phase alternates betweemd

B layers. Since the composition of the layers is only deter-
mined on average by the deposited flux, our model allows
this form of “superlattice ordering transition.” However, in
realistic growth situations, the ordered phase will have dif-

The above expression is the equilibrium probability for thef€rént domains, leading to approximately the same numbers
top layer of a two-layer system, obtained after summing ovePf A andB particles, even within a single layer. In the op-
the states of the bottom layer. Transverse correlation fund?0Site caseJ;>0 andJ, <0), all layers have an antiferro-

tions (i.e., perpendicular to the growth directjoare there-

magnetic occupation in the ground state, with sublattices for

fore exactly the same as correlation functions in a two-layet® same type of atoms laying on top of each other. These

system.
In fact, from Egs.(1) and (3) it easily follows that the
system satisfies detailed balance, i.e.,

W,,P,=W,,P,. (4

ay’ vy

This means thatbeyond a transient thicknesthe crystal

situations can also be mapped to the ferromagnet by revers-
ing the sign of the negative coupling constant, and simulta-
neously of the spins on one of the sublattices. We shall there-
fore focus onJ;,J, >0 from now on.

Generalizing our model, by allowing several layers at the
surface to equilibrate, is straightforward. To mimic the large
energy of the impinging particles, as well as their modified

looks the same along or against the growth direction, anénvironment, we can assign each of thendpyers from the

that the sequence of layers corresponds to time evolution cfurface a different temperature, depending on its depth.
thermodynamic equilibrium states. This generalizes the preEquivalently, we can give to each layer different interaction
vious results for cellular automata, which are obtained byparametergsee Fig. L The probability that a layer with
setting the in-plane interactiors, to zero. As in such cel- configurationy follows one in configuratior in the bulk is
lular automata, the d+1)-dimensional system has trans- obtained by considering the layer at the moment when it is
verse properties likd-dimensional models. In particular, we the nth layer from the top, i.e., immediately before its con-
expect phase transitions to occur at the same temperature figuration is frozen. Denoting the configuration of the first
for a d-dimensional two-layer system. n—1 layers byC, and their energyincluding the coupling to
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ity distribution. Layern of Fig. 2 therefore sees exactly the
same environment as layarof Fig. 1 in a grown bulk(be-
yond a transient thicknessThe top(and also the bottom
first n—1 layers, layer of Fig. 2 describe the equilibrium at the top surface
configuration ¢y layer, while thenth layer describes the transverse correla-
tions in the bulk. While the correlations parallel to the
growth direction will be more complicated, the general con-

Layer n, configuration y clusions derived below for the case=1 should remain
valid. In the following, we restrict our discussion to the case
First bulk layer, n=1.

configuration o

[ll. ONE DIMENSION

FIG. 1. System where the taplayers equilibrate. The (1+ 1)-dimensional model can in fact be solved ex-
actly, and displays interesting critical properties. In the pre-
the nth layer, and different interaction constants in the dif-ceding section, we have found that correlations perpendicu-

ferent layers by E(C,), the conditional probabilitiesV.,, lar to the growt_h_ direction are Iidentical to those _of a two-
can be written as layer system, giving the two-spin correlation function

9, (h=(a{"a{%)

CE exp{— BLE,+V,,+E(C,)]}

Wya: - ) 2 eXF[_BHay] A |
2 exp= BIEs+ Vst E(C))]) = ofale) = “(_2) G
WCs a 1
< exq: - BH 51/]
Following the approach for the case=1, we can show that "
the set of weights where\; are\, are the largest and next largest eigenvalues
of the 4x4 transfer matrix. Explicit diagonalization of the
2 exp— BlE,+E,+V,, +E(C)+E(C,)]}  Mmatixgives
_ Yiby b
Po= 5 Ni=exp( B +2BJ,)+exp B —2BJ,)
exp{—B[Es+E,+Vs,+E(Cs)+E(C,
s o X PLES s HE(C)+E(C)T} - O(ext~ B3 —283.),
describes a stationary state. It is easy to verify that this sta- No=exp( B +2BJ,)—exp BI—2B8d,). (7)
tionary solution satisfies detailed balance. The stationary
state corresponds to an equilibrium Hamiltonian withldy- It is then easy to check that in the limit of zero temperature

ers, and interactions which depend on the distance from thg8— ), the correlations decay exponentially with a corre-
closest surfacésee Fig. 2. In this symmetric system, con- lation lengthg, which diverges as
figurations of the layera andn+1 have the same probabil-

L =exp(4BJ,)/2. (8)

The following argument provides a better physical under-
standing for the form o€, . At low temperatures, the energy
of the two-layer system is only slightly above its ground
state, and consequently most of the spins are parallel. The
lowest-energy excitations of the ground state that destroy
long-range correlations are straight domain walls that cost an
energy of 4, and occur with a probability 2 exp@pJ,)

(see Fig. 3 The factor 2 is included since either the left part
or the right part of the system can flip in order to create a
domain wall at a given location. More complicated excita-
tions like domain walls with steps cost at least an energy of
4J, +2J and occur with probabilities smaller by a factor of
exp(—2BJ)) than straight domain walls. The transverse cor-
relation length is given by the inverse density of domain
lcac?rtf?g_ulal\?i)cﬁrsc" walls, leading to Eq(8).

Y The correlation length parallel to the growth direction can
be obtained by similar considerations. Parallel correlations
are destroyed by the motion of domain walls. The probability
that a domain wall moves by one lattice site to the right or to

FIG. 2. Graphical illustration of the stationary distributiy) . the left when a new layer is added is ex{#8J)) (see Fig. 3.

first n—1 layers,
configuration Cy

Layer n, configuration o

Layer n+1, configuration y
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a)

a)

b)

FIG. 3. (a) Straight domain walls are the lowest-energy excita-
tions of a two layer systen{b) A kink in the domain wall costs
additional energy. * * *

Since these steps in the domain wall are independent from c)

each other, it take? steps to move over the distance of the * * *
perpendicular correlation length. This mechanism destroys
correlations of the ordeg, in the spin orientation after

£ exp(28J)) layers. We conclude

FIG. 4. Three elementary processes in domain wall dynamics:
ot 3u/23 (a) motion of a wall,(b) creation of a pair of walls, ant) annihi-
Elrexp8BJ, +2BJ) & I, (90 lation of a pair of walls.

leading toz=2+J)/2], . Since we have assumed that do- creation of a pair of neighboring domain walls, and annihi-
main walls move by single steps, our result is only valid forlation of a pair of neighboring domain walisee Fig. 4,
sufficiently low temperature56‘1<JH. Depending on the occurring with probabilities expf28J),
ratio between the two coupling constants, the critical expoexd —28(2J, +J)], and expt-2B8J)/[exp(—26J)
nent z can assume any value larger than two. Siaces +exp(—=4pJ,)], respectively. These probabilities are ob-
larger than one, the parallel correlation length becomes muctained by dividing the Boltzmann factor for the considered
larger than the perpendicular correlation length when theevent by the sum of the Boltzmann factors of all possible
temperature is low. On the other hand, we can expect that fa@vents at that place, and retaining only the leading contribu-
high temperatures the direction that has the stronger couplinipns. The neglected terms become vanishingly small com-
has the larger correlation length, as shown explicitly in Secpared to the leading terms in the limit of zero temperature. In
IV. Thus, if J<J, , the two correlations lengths must cross the denominator of the third expression, the Boltzmann fac-
at some temperature. tor for domain wall annihilation can be larger or smaller than
The above intuitive argumerisee alsd11] for a similar  the Boltzmann factor for the two domains walls staying at
argument in the context of one-dimensional Ising modelstheir place, depending on the values of the coupling con-
does not consider the creation and annihilation of pairs oftants. We therefore keep both contributions. Bo¥2J, ,
domain walls, which play an important role in the dynamicsthe three probabilities are all very small and can therefore be
of the system. In the following, we therefore derive the ex-interpreted as rates. If we extract a time scale ex3#J)),
ponentz from the complete dynamics of the domain walls. these rates become 1, exp{BJ, ), and exp(4J, ), indepen-
We will see that models with differed but the samd, are  dently of the value of, showing that models with different
equivalent, apart from an overall time scale proportional taJ; differ only by the overall time scale. Fayj<2J, , the
exp(—2BJ). We will also see that these models are closelysituation is slightly different: A pair of neighboring domain
related to the Glauber modgl0] describing the dynamics of walls is annihilated almost with probability one during a
a one-dimensional Ising spin chain that is known to have a&ingle time step, while this process occurs3pr-2J, on an
dynamical critical exponerz=2. In the Glauber model, it average only after exs(J—2J,)] time steps. However, in
does not cost any energy to move a domain wall and theredoth cases this process is very fast compared to the time it
fore this motion does not become slower with decreasingakes to move a domain wall or to create a pair of domain
temperature. walls. Additionally, the probability that a pair of neighboring
The domain wall dynamics consist of three different el-domain walls ultimately escapes annihilation by increasing
ementary processes: motion to the right or left by one sitetheir distance to two is 2 exp(43J,) in both cases. This
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z=2 of the Glauber model with the temperature dependence
* * * * + * of the timg scale in our model, we find E@).

Nonuniversal dynamical critical exponents are also
‘ known from other one-dimensional Ising systems. An Ising
* * + * * * spin chain with two different coupling constantg and J,,

with J;<J,, has an exponert=1+J,/J; [12,13. Finally,
we note that the result E¢Q) depends strongly on the lattice

FIG. 5. Different lattice structure that allows domain wall mo- structure of the system. When the cel_ls of the lattice do_nOt

tion at no additional energy. lay on top of each other but are shifted by half a lattice
constant, as in Fig. 5, the motion of a domain wall does not

shows that(apart from the overall time scalenodels with ~ COSt any energy, and we retrieve the exporeng.
J|<2J, are equivalent to those with>2J, . (A short cal-

culation shows that they are also equivalent to models with

Jj=2J,.) This equivalence becomes even more obvious IV. GENERAL DIMENSIONS

when we describe the model in terms of creation and anni- | irast o th . di . of i .
hilation of pairs of domain walls at distance two, and of n contrast 1o the previous discussions imension,

domain wall motion. Domain walls at distance two are cre-N the physically more relevant case @+ 1)-dimensional
ated by first flipping one spifcreating a pair at distance gne 9rowth (and more generally for the case dft-1 dimen-

and then flipping one of its neighbors, which happens in alfions, cr|t_|c§1I demixing and ordering transitions generically
cases with a rate 2 exp@BJ—8pJ,). [Strictly speaking, ~Occur gtf|n|te _g.rgvvth temperatureThe anomalies due to
the pair at distance one cannot only be generated by flippinganishing mobilities are no longer present, and the mobility
a spin in a homogeneous domain, but also by the encount®f a domain wall should be finite in the neighborhood of the
of two domain walls that have been further apart beforecritical point. We therefore cannot use the method of the
However, it can easily be calculated that the number of pairpreceding section in order to obtain the relation between the
at distance one generated by this process is smaller by teansverse and parallel correlation lengths close to the critical
factor of exp-48J,) than the number of those generated bypoint. However, we can derive the critical exponenising
flipping a spin in a homogeneous domaibomain walls at  general arguments. As before, correlations perpendicular to
distance two decrease their distance to one with a ratghe growth direction are identical to those of a two-layer
2 exp(=2pJ), from where they annihilate almost certainly. system and diverge at a critical point with the exponenof

If we extract a factor exp{23J)) from the time scale, the g d-dimensional Ising system. A sequence of layers can be
motion of domain walls, the creation of pairs of domain regarded as successive snapshots of configurations in time.
walls at distance two, and the annihilation of pairs of domaingince our model satisfies detailed balance, this time sequence
walls  at dlsta_nzce two, occur with the rates 1, qrresponds to an equilibrium system. The critical behavior
2 exp(-8pJ,)=¢ 712, and 2, irrespective of the value of 4 equilibrium systems falls into several universality classes
Jj - Since we can neglect the interference of pairs of domaifat are determined by symmetries and conservation laws.

walls at dist:mﬁe one Wlith any oflthelse three processe;, t€nce there is no local conservation of spins from one layer
dynamics of the model is completely described by thesg, yhe next we expect our model to be in the universality

three rates. class of an Ising system with relaxationghodel A or

To complete this discussion, we show that the dynamic . .
; : . laubej dynamics. Therefore, correlations parallel the
of our model are essentially equivalent to the dynamics o LT . . .
rowth direction diverge with an exponent, wherez is the

the Glauber model. In the Glauber model, the rate withd ! . ) .
which a spin at site flips is given by[10] (Glaubej dynamic exponent of theal-dimensional Ising

model. Sincez is larger than one, correlation volumes are
o y prolate near the critical point. This is also true just below the
W(oi)=§ 1- Eai(ai+l+ ai_l)}, (10)  critical point, where the system hag establisheq long-range
correlations. There, one usually defines correlation volumes
for the deviation from the mean “magnetizatioril'e., dif-

. _ 1 - 1 &2 _
with y=tanh(38J)~1-2 exp( 4/3‘3)_.1 §712 at Iowlte_m ference betweeA andB concentrationswithin a domain.
peratures. The parametar sets the time scale and is inde-

. ; . Next, we derive the high- and low-temperature behaviors
pendent of temperature. Motion of a domain wall, creation ofof our model in general dimensions. The overall probabilit
a pair of neighboring domains walls, and annihilation of a 9 ) b Y

pair of neighboring domain walls occur with the ratet2, for encountering a particular sequence of layers is given by

ag?/4, anda respectively. If we setr=2 exp(-25J), we

find the same rates as for our model, with the only difference

being that creation and annihilation of pairs of domain walls?(@n:an-1, -+ @) =Waay Way jay
happens at distance one instead of distance two. This differ-

ence is obviously irrelevant at low temperatures, where do-

main walls must diffuse over large distances of the order oSubstituting from Eq(1), it follows that the numerator of the
the correlation length before they encounter each other. Rexbove expression is simply the Boltzmann weight for a regu-
ducing this distance by one has no noticeable effect on thiar ferromagnetic nearest neighbor Ising model. The denomi-
dynamics of the system. Combining the critical exponentator is the product of factors

Wopa (1D
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Z,=exp(+ BE,) overall system of spins. The anisotropy in correlations is
amplified at lower temperatures, and ultimately they diverge
with different exponents at the critical point.

:Ey exf = B(Va, T E))] At very low temperatures, there are typically few un-
aligned neighbors, and in a low-temperature expansion, Eq.
-y eXF{B%E oo 83, S ool (12) is evaluated as
Y i (i)
(12 Zfexrl( NﬁJ”+BJi<i2j> ool |. (14)

one for each layer. After the summation is performe, (The spins in layery are assumed to be completely aligned

introduces additional interactions within layar These in- to those in layerw in the configuration of lowest energy.

teractions are in general nonlocal, and involve muItlpIe.I.hus at this order, the effective in-plane couplings are

E’?\I/?asl rendering the problem highly anisotropic, and non'ﬂJL—,BJL~O. The physical meaning of this result is that at

) , ~ , . low temperatures each new layer essentially repeats the con-
We first estimateE, by a high-temperature expansion. o ration of the previous layer. The boundaries between dif-
For each Ising bond appearing in H32), we can write ferent domains have very small mobilitjof order of
_ exp(—pJ)]. It is this reduced mobility that leads to the un-
o)=c(l+tojo; . . . :
eXp BIoio)) =c(1+ o), (13 usual critical properties of the 11)-dimensional model

where c=cosh(@J) andt=tanh(3J) is the small parameter discussed earlier.

for the high-temperature expansion. After summing over the

spins in layery, the surviving contributions t& , are repre- V. CONCLUSIONS
sented graphically by paths connecting pairs of spins in layer

«. For hypercubic layers of coordination numbet, 2 In summary, we have studied a model for thin film growth

of (d+1)-dimensional binary alloys that explicitly includes
the relaxation and diffusion of the atoms on the top surface.
Z,=(cichN X T (1+tyol?a™ ]I (1+t,0{”c”)  Since there is no further equilibration inside the film, the
{e} 1 {5 bulk configuration reflects the time history of fluctuations at
the surface. The resulting correlations are highly anisotropic:
within each layer, they correspond to the equilibrium on a
d-dimensional system, while the behavior parallel to the
growth direction reflects the dynamics ofdadimensional
. Ising system with no conservation laws. These results are
similar to previous (cellular automata inspiredmodels

After inversion, the leading effect of the denominators is toWhICh include no surface equilibration. This suggests that a

. . 2 . wider universality is present: As long as equilibration stops
reducethg in-plane cgupllngs B, — 1t - At hlgher O after a finite number of layers from the top surface, the above
ders, antiferromagnetic bonds of strengﬁ ,forspinsata  .gnclusions should hold. One exception is for

distances, and multiple spin interactions are also ge”erated(1+1)-dimensiona| systems, which due to the vanishing

A similar high temperature expansion results in the perqpility of domains at zero temperature, exhibit nonuniver-
pendicular and parallel correlation functions for a pair ofgg pehavior.

=(cjcHM

1+2 tﬁtLO'i(a)O'](a)'f' .
(i)

m(ccf)Nexp( +tft, 2 ool 4
Uy

spins at a distancewithin the same plane or column, A crucial assumption of the model is that the surface layer
1(1+1) has sufficient time to equilibrate, before it is completed and
g, (H=t\ {1+ 5 [Z(d—l)tfﬂﬁﬁ . incorporated in the bulk. This requires that any surface

equilibration timesrg should be less than the time for the
growth of a layerrg . The latter is controlled by the speed of

deposition. The former time, however, depends on the actual

gi(D=th[1+dI(1+1)t2+--.]. dynamics at the surface. It is important to emphasize that
I I L 7r has nothing to do with the “dynamics” that determine the

WhenJ;#J, , these two correlation functions differ already correlations in growth direction. If the main equilibration
in the first term, leading to stronger correlations in the direcTMechanism is diffusion of particles on the surfagewill be

tion that has the stronger coupling. Whap<J, , correla- quite long, and dlverge_ close to a crltlcal_pomt, where the_
tion volumes are oblate at high temperatures and musgystem performs a continuous phase transition from a chemi-
change their shape to prolate when the temperature is déally disordered state to phase separation. Thys;&°,
creased and the critical point is approached. wherez.>z is the exponent for conservatiyenodel B dy-

Due to the weakening of the in-plane bonds, the two cornamics. On the other haney can be considerably reduced if
relation functions differ even fodj=J, , resulting in a re- the surface particles are allowed to desorb into the gas. By
duced correlation length perpendicular to the growth direcfast mixing of the vapor, it is then possible to achievega
tion. In fact, such a weakening is precisely what is needed tthat is independent of the dynamics at the surface.
make the correlations within each layer appead atmen- If the inequality 7r< 7 is violated, the most likely sce-
sional, despite thed+ 1)-dimensional connectivity of the nario is that in-plane equilibrations are frozen at some scale,

and
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resulting in configurations similar to those obtained in a All considerations so far are based on the assumption
rapid quench. The situation is further complicated in the low-that the surface of the film is flat. It is likely that surface
temperature phase. Phase separation during deposition n@ughness and formation of domains will affect each other.
sults in the coarsening of domains, as observed in experit is thus quite interesting to explore the interconnections
ments on Al-Ge[14]. Computer simulations of this process petween roughness and phase transitions in composite
generate at low growth speed domains that extend into filagjjm growth. Another complication that exists in recent
ments along the growth directidi4], a result also obtained experiments on growth of Co-Pt alloyg], is that one of
from analytical calculationfl5], and in agreement with our the two components is magnetic. The additional magnetic
observation in Sec. IV that each new layer essentially repeafieractions provide yet another twist to this interesting
the previous layer at low temperatures. roblem.

A similar study for systems that have a continuous phasg
transition from a chemically disordered to an ordetéah-
tiferromagnetic’) phase has not yet been performed to our
knowledge. Since the dynamics for antiferromagnetic order-
ing do not require long-range transport of particles, large
correlated domains can be formed during finite time, given We thank Y. Bar-Yam, F. Hellman, and A. Stella for
large correlations in the layer below. We therefore expechelpful discussions. B.D. is supported by the Deutsche For-
that a small finite growth velocity does not destroy the phas&chungsgemeinschadfdFG) under Contract No. Dr 300/1-1.
transition of ordering systems, but only shifts the critical M.K. acknowledges support from NSF Grant No. DMR-93-
temperature to a lower value. 03667.
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