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Model for growth of binary alloys with fast surface equilibration

Barbara Drossel and Mehran Kardar
Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 2 October 1996!

We study a simple growth model for (d11)-dimensional films of binary alloys in which atoms are allowed
to interact and equilibrate at the surface, but are frozen in the bulk. The resulting crystal is highlyanisotropic:
Correlations perpendicular to the growth direction are identical to ad-dimensionaltwo-layer system in equi-
librium, while parallel correlations generally reflect the dynamics of an Ising system. For stronger in-plane
interactions, the correlation volumes change from oblate to highly prolate shapes near a critical demixing or
ordering transition. Ind51, the critical exponentz relating the scaling of the two correlation lengths varies
continuously with the chemical interactions.@S1063-651X~97!04504-2#

PACS number~s!: 05.70.Jk, 68.55.2a, 75.10.Hk
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I. INTRODUCTION

Growth by vapor deposition is a highly effective proce
for producing high quality materials. The resulting films c
show properties that are very different from systems in b
equilibrium@1,2#. For example, in some binary alloys@2#, the
deposited atoms are highly mobile as long as on the surf
but relatively immobile once incorporated in the bulk. As
result, the surface fluctuations that are formed during
growth process are frozen into the bulk. A characteristic s
nature of such~metastable! phases isanisotropiccorrelations
that are related to the growth direction, and are absen
bulk equilibrium.

A number of models for composite film growth have be
introduced in the past@3–8#. Generally in these models, th
probability that an incoming atom sticks to a given surfa
site depends on the state of neighboring sites in the la
below. Once a site is occupied, its state does not change
more, and thus the surface configuration becomes froze
the bulk. Such growth rules are equivalent to~stochastic!
cellular automata, where each site is updated in parallel
function of the states of its neighbors. Subsequent state
the cellular automaton correspond to successive layers in
crystal.

It is in general not possible to calculate exact correlat
functions for such~nonequilibrium! growth processes. Th
exception occurs in special cases where the growth rules
isfy a detailed balance condition, relating their stationary
havior to an equilibrium system of one lower dimension@9#.
However, it can be shown that ifd-dimensional probabilistic
cellular automata with two states, and up-down symme
undergo a symmetry breaking, their critical behavior is ide
tical to the corresponding Ising model in equilibrium@9#.
Correlations in time are then equivalent to those genera
by Glauber dynamics of the Ising system. InGlauber dynam-
ics the local states evolve with probabilities consistent w
the changes of the Boltzmann weight. However, no lo
conservation law of particle number is imposed in such
namics. (d11)-dimensional crystals grown according to t
rules of these cellular automata, therefore, have an or
disorder phase transition with correlations perpendicula
the growth direction characterized by the critical expon
n, and those parallel to the growth direction by the expon
551063-651X/97/55~5!/5026~7!/$10.00
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nz of thed-dimensional Ising model (z being the appropriate
dynamical critical exponent!.

Since in the above models the local adsorption probab
ties depend on the surface states, some form of fast red
bution of atoms is implied. One possibility is the mixing o
particles in the gas phase prior to adsorption. However,
easy to envision conditions where the local adsorption pr
abilities are determined by densities in the gas phase~e.g., in
ballistic deposition!. In such cases, rapid desorption fro
unfavorable locations on the surface may provide the app
priate redistribution mechanism. However, given the h
mobility of particles on the surface, surface diffusion is a
other important process. In this case, it is essential to a
include the interactions between the diffusing surface p
ticles which eventually leads to formation of domains a
islands.

In this paper, we include the interactions between ato
on the top layer, which is assumed to equilibrate complet
~by surface diffusionor desorption-resorption mechanism!
before another layer is added. Such an assumption is rea
only if the growth rate is much slower than characteris
equilibration times of the surface layer. Its limits of validit
are discussed in the conclusion; in particular, it is likely
break down in the vicinity of a critical point, where the sy
tem undergoes a continuous phase transition from chemic
disordered to either phase separated~for attractive interac-
tions!, or sublattice ordered~for repulsive interactions!. We
show that this model satisfies detailed balance, and
therefore be analyzed with methods from equilibrium sta
tical physics. While the resulting critical behavior is simil
to the previously studied~cellular automata! models, the
‘‘temporal’’ correlations in 111 dimension are very differen
from those obtained from the corresponding~particle non-
conserving or Glauber! dynamical Ising model@10#: On ap-
proaching zero temperature@i.e., the critical temperature o
the ~111!-dimensional system#, the diverging vertical and
horizontal correlation lengths are related by an exponenz
that is, in general, larger than the Glauber value of 2, a
varies continuously with the ratio of the perpendicular a
parallel coupling constants. In all dimensions, if the ra
between the two coupling constants is larger than unity,
two correlation lengths cross at some temperature, chan
the shapes of typical correlated clusters from oblate~at high
growth temperatures! to prolate ~near the critical point!.
5026 © 1997 The American Physical Society
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55 5027MODEL FOR GROWTH OF BINARY ALLOYS WITH FAST . . .
II. MODEL

The model is defined as follows We consider
(d11)-dimensional hypercubic lattice and two kinds of a
oms A and B. Let eAA , eAB , and eBB be the interaction
energies between neighboring atoms of typesAA, AB, and
BB, respectively. When each layer hasN sites, there are
2N possible configurations for a layer. The energy cost
adding a layer of configurationg on top of one with configu-
rationa is the sum of the internal energyEg of the new layer
and of the interaction energyVag with the previous layer.
These energies are just the sums of all local bondse i j be-
tween nearest neighborsi j within the new layer and betwee
the two layers, respectively. In addition,Eg contains a
chemical potentialmANA1mBNB that is related to the partia
pressures ofA andB atoms in the gas phase.

Since we assume that the top layer is in thermodyna
equilibrium, the conditional probability that it is in configu
rationg, given configurationa for the layer below, is

Wga5
exp@2b~Eg1Vag!#

(
d

exp@2b~Ed1Vad!#

, ~1!

whereb51/kBT; T is the temperature at which the crystal
grown, andkB is the Boltzmann constant. After adding man
layers, the probability for finding a given configurationg is
determined by the stationarity condition

Pg5(
a

WgaPa , ~2!

which has the solution

Pa5

(
g

exp@2b~Ea1Eg1Vag!#

(
d,n

exp@2b~Ed1En1Vdn!#

[

(
g

exp@2bHag#

(
d,n

exp@2bHdn#

.

~3!

The above expression is the equilibrium probability for t
top layer of a two-layer system, obtained after summing o
the states of the bottom layer. Transverse correlation fu
tions ~i.e., perpendicular to the growth direction! are there-
fore exactly the same as correlation functions in a two-la
system.

In fact, from Eqs.~1! and ~3! it easily follows that the
system satisfies detailed balance, i.e.,

WagPg5WgaPa . ~4!

This means that~beyond a transient thickness! the crystal
looks the same along or against the growth direction,
that the sequence of layers corresponds to time evolutio
thermodynamic equilibrium states. This generalizes the p
vious results for cellular automata, which are obtained
setting the in-plane interactionsEa to zero. As in such cel-
lular automata, the (d11)-dimensional system has tran
verse properties liked-dimensional models. In particular, w
expect phase transitions to occur at the same temperatu
for a d-dimensional two-layer system.
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The two-layer Hamiltonian occurring in Eq.~3! can be
rewritten in terms of Ising variables by introducing the sp
statess511 for an A atom, ands521 for a B atom.
Using J5(eAA22eAB1eBB)/4 and h53(eAA2eBB)/4
1(mA2mB)/2, and neglecting an additive constant, the tw
layer Hamiltonian becomes

Hag5J'(
^ i , j &

~s i
~a!s j

~a!1s i
~g!s j

~g!!1Ji(
i51

N

s i
~a!s i

~g!

1h(
i51

N

~s i
~a!1s i

~g!!, ~5!

where we have also allowed for the possibility of anisotro
couplings parallel and perpendicular to the growth directi
^ i , j & denotes a pair of nearest-neighbor sites within a lay
As a function of the ‘‘field’’h, there is a first-order transition
betweenA andB rich phases. Here, we focus on the coe
istence line ath50, which terminates at a critical poin
where the correlation lengths diverge both parallel and p
pendicular to the growth direction. Forh50, the Hamil-
tonian is invariant under the reversal of the signs of all spi
This means that on an average an equal number ofA and
B atoms are deposited. If the coupling constantsJ' and Ji
are positive, atoms of the same kind attract each other,
the two types of atoms phase separate below the critical t
perature. IfJ' and Ji are both negative, and if the lattic
structure allows a unique ground state, the low-tempera
phase is ‘‘antiferromagnetic’’ withA andB atoms sitting on
different sublattices. These two cases can be mapped
each other by reversing the sign of the coupling consta
and of the spins on one of the sublattices. IfJi,0 and
J'.0, the low-temperature phase alternates betweenA and
B layers. Since the composition of the layers is only det
mined on average by the deposited flux, our model allo
this form of ‘‘superlattice ordering transition.’’ However, i
realistic growth situations, the ordered phase will have d
ferent domains, leading to approximately the same numb
of A andB particles, even within a single layer. In the o
posite case (Ji.0 andJ',0), all layers have an antiferro
magnetic occupation in the ground state, with sublattices
the same type of atoms laying on top of each other. Th
situations can also be mapped to the ferromagnet by rev
ing the sign of the negative coupling constant, and simu
neously of the spins on one of the sublattices. We shall th
fore focus onJi ,J'.0 from now on.

Generalizing our model, by allowing several layers at t
surface to equilibrate, is straightforward. To mimic the lar
energy of the impinging particles, as well as their modifi
environment, we can assign each of the topn layers from the
surface a different temperature, depending on its de
Equivalently, we can give to each layer different interacti
parameters~see Fig. 1!. The probability that a layer with
configurationg follows one in configurationa in the bulk is
obtained by considering the layer at the moment when i
the nth layer from the top, i.e., immediately before its co
figuration is frozen. Denoting the configuration of the fir
n21 layers byCg and their energy~including the coupling to
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5028 55BARBARA DROSSEL AND MEHRAN KARDAR
the nth layer, and different interaction constants in the d
ferent layers! by E(Cg), the conditional probabilitiesWga
can be written as

Wga5

(
Cg

exp$2b@Eg1Vag1E~Cg!#%

(
d,Cd

exp$2b@Ed1Vad1E~Cd!#%

.

Following the approach for the casen51, we can show tha
the set of weights

Pa5

(
g,Cg ,Ca

exp$2b@Ea1Eg1Vag1E~Cg!1E~Ca!#%

(
d,n,Cd ,Cn

exp$2b@Ed1En1Vdn1E~Cd!1E~Cn!#%

describes a stationary state. It is easy to verify that this
tionary solution satisfies detailed balance. The station
state corresponds to an equilibrium Hamiltonian with 2n lay-
ers, and interactions which depend on the distance from
closest surface~see Fig. 2!. In this symmetric system, con
figurations of the layersn andn11 have the same probabi

FIG. 1. System where the topn layers equilibrate.

FIG. 2. Graphical illustration of the stationary distributionPg .
-
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ity distribution. Layern of Fig. 2 therefore sees exactly th
same environment as layern of Fig. 1 in a grown bulk~be-
yond a transient thickness!. The top ~and also the bottom!
layer of Fig. 2 describe the equilibrium at the top surfa
layer, while thenth layer describes the transverse corre
tions in the bulk. While the correlations parallel to th
growth direction will be more complicated, the general co
clusions derived below for the casen51 should remain
valid. In the following, we restrict our discussion to the ca
n51.

III. ONE DIMENSION

The (111)-dimensional model can in fact be solved e
actly, and displays interesting critical properties. In the p
ceding section, we have found that correlations perpend
lar to the growth direction are identical to those of a tw
layer system, giving the two-spin correlation function

g'~ l ![^s i
~a!s i1 l

~a! &

5(
a

s i
~a!s i1 l

~a!

(
g

exp@2bHag#

(
d,n

exp@2bHdn#

}S l2

l1
D l , ~6!

wherel1 arel2 are the largest and next largest eigenvalu
of the 434 transfer matrix. Explicit diagonalization of th
matrix gives

l15exp~bJi12bJ'!1exp~bJi22bJ'!

1O„exp~2bJi22bJ'!…,

l25exp~bJi12bJ'!2exp~bJi22bJ'!. ~7!

It is then easy to check that in the limit of zero temperatu
(b→`), the correlations decay exponentially with a corr
lation lengthj' which diverges as

j'.exp~4bJ'!/2. ~8!

The following argument provides a better physical und
standing for the form ofj' . At low temperatures, the energ
of the two-layer system is only slightly above its groun
state, and consequently most of the spins are parallel.
lowest-energy excitations of the ground state that des
long-range correlations are straight domain walls that cos
energy of 4J' and occur with a probability 2 exp(24bJ')
~see Fig. 3!. The factor 2 is included since either the left pa
or the right part of the system can flip in order to create
domain wall at a given location. More complicated excit
tions like domain walls with steps cost at least an energy
4J'12Ji and occur with probabilities smaller by a factor
exp(22bJi) than straight domain walls. The transverse c
relation length is given by the inverse density of doma
walls, leading to Eq.~8!.

The correlation length parallel to the growth direction c
be obtained by similar considerations. Parallel correlatio
are destroyed by the motion of domain walls. The probabi
that a domain wall moves by one lattice site to the right or
the left when a new layer is added is exp(22bJi) ~see Fig. 3!.
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55 5029MODEL FOR GROWTH OF BINARY ALLOYS WITH FAST . . .
Since these steps in the domain wall are independent f
each other, it takesj'

2 steps to move over the distance of t
perpendicular correlation length. This mechanism destr
correlations of the orderj' in the spin orientation afte
j'
2 exp(2bJi) layers. We conclude

j i}exp~8bJ'12bJi!}j
'

21Ji/2J' , ~9!

leading toz521Ji/2J' . Since we have assumed that d
main walls move by single steps, our result is only valid
sufficiently low temperatures,b21!Ji . Depending on the
ratio between the two coupling constants, the critical ex
nent z can assume any value larger than two. Sincez is
larger than one, the parallel correlation length becomes m
larger than the perpendicular correlation length when
temperature is low. On the other hand, we can expect tha
high temperatures the direction that has the stronger coup
has the larger correlation length, as shown explicitly in S
IV. Thus, if Ji,J' , the two correlations lengths must cro
at some temperature.

The above intuitive argument~see also@11# for a similar
argument in the context of one-dimensional Ising mode!
does not consider the creation and annihilation of pairs
domain walls, which play an important role in the dynam
of the system. In the following, we therefore derive the e
ponentz from the complete dynamics of the domain wal
We will see that models with differentJi but the sameJ' are
equivalent, apart from an overall time scale proportiona
exp(22bJi). We will also see that these models are clos
related to the Glauber model@10# describing the dynamics o
a one-dimensional Ising spin chain that is known to hav
dynamical critical exponentz52. In the Glauber model, i
does not cost any energy to move a domain wall and th
fore this motion does not become slower with decreas
temperature.

The domain wall dynamics consist of three different
ementary processes: motion to the right or left by one s

FIG. 3. ~a! Straight domain walls are the lowest-energy exci
tions of a two layer system.~b! A kink in the domain wall costs
additional energy.
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creation of a pair of neighboring domain walls, and anni
lation of a pair of neighboring domain walls~see Fig. 4!,
occurring with probabilities exp(22bJi),
exp@22b(2J'1Ji)#, and exp(22bJi)/@exp(22bJi)
1exp(24bJ')#, respectively. These probabilities are o
tained by dividing the Boltzmann factor for the consider
event by the sum of the Boltzmann factors of all possi
events at that place, and retaining only the leading contri
tions. The neglected terms become vanishingly small co
pared to the leading terms in the limit of zero temperature
the denominator of the third expression, the Boltzmann f
tor for domain wall annihilation can be larger or smaller th
the Boltzmann factor for the two domains walls staying
their place, depending on the values of the coupling c
stants. We therefore keep both contributions. ForJi.2J' ,
the three probabilities are all very small and can therefore
interpreted as rates. If we extract a time scale exp(22bJi),
these rates become 1, exp(24bJ'), and exp(4bJ'), indepen-
dently of the value ofJi , showing that models with differen
Ji differ only by the overall time scale. ForJi,2J' , the
situation is slightly different: A pair of neighboring domai
walls is annihilated almost with probability one during
single time step, while this process occurs forJi.2J' on an
average only after exp@2b(Ji22J')# time steps. However, in
both cases this process is very fast compared to the tim
takes to move a domain wall or to create a pair of dom
walls. Additionally, the probability that a pair of neighborin
domain walls ultimately escapes annihilation by increas
their distance to two is 2 exp(24bJ') in both cases. This

-

FIG. 4. Three elementary processes in domain wall dynam
~a! motion of a wall,~b! creation of a pair of walls, and~c! annihi-
lation of a pair of walls.
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5030 55BARBARA DROSSEL AND MEHRAN KARDAR
shows that~apart from the overall time scale! models with
Ji,2J' are equivalent to those withJi.2J' . ~A short cal-
culation shows that they are also equivalent to models w
Ji52J' .) This equivalence becomes even more obvio
when we describe the model in terms of creation and a
hilation of pairs of domain walls at distance two, and
domain wall motion. Domain walls at distance two are c
ated by first flipping one spin~creating a pair at distance one!
and then flipping one of its neighbors, which happens in
cases with a rate 2 exp(22bJi28bJ'). @Strictly speaking,
the pair at distance one cannot only be generated by flipp
a spin in a homogeneous domain, but also by the encou
of two domain walls that have been further apart befo
However, it can easily be calculated that the number of p
at distance one generated by this process is smaller b
factor of exp(24bJ') than the number of those generated
flipping a spin in a homogeneous domain.# Domain walls at
distance two decrease their distance to one with a
2 exp(22bJi), from where they annihilate almost certainl
If we extract a factor exp(22bJi) from the time scale, the
motion of domain walls, the creation of pairs of doma
walls at distance two, and the annihilation of pairs of dom
walls at distance two, occur with the rates
2 exp(28bJ')5j'

22/2, and 2, irrespective of the value o
Ji . Since we can neglect the interference of pairs of dom
walls at distance one with any of these three processes
dynamics of the model is completely described by th
three rates.

To complete this discussion, we show that the dynam
of our model are essentially equivalent to the dynamics
the Glauber model. In the Glauber model, the rate w
which a spin at sitei flips is given by@10#

W~s i !5
a

2 F12
g

2
s i~s i111s i21!G , ~10!

with g5tanh(2bJ).122 exp(24bJ).12j22/2 at low tem-
peratures. The parametera sets the time scale and is ind
pendent of temperature. Motion of a domain wall, creation
a pair of neighboring domains walls, and annihilation o
pair of neighboring domain walls occur with the ratesa/2,
aj22/4, anda respectively. If we seta52 exp(22bJi), we
find the same rates as for our model, with the only differen
being that creation and annihilation of pairs of domain wa
happens at distance one instead of distance two. This di
ence is obviously irrelevant at low temperatures, where
main walls must diffuse over large distances of the orde
the correlation length before they encounter each other.
ducing this distance by one has no noticeable effect on
dynamics of the system. Combining the critical expon

FIG. 5. Different lattice structure that allows domain wall m
tion at no additional energy.
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z52 of the Glauber model with the temperature depende
of the time scale in our model, we find Eq.~9!.

Nonuniversal dynamical critical exponents are a
known from other one-dimensional Ising systems. An Isi
spin chain with two different coupling constantsJ1 andJ2,
with J1,J2, has an exponentz511J2 /J1 @12,13#. Finally,
we note that the result Eq.~9! depends strongly on the lattic
structure of the system. When the cells of the lattice do
lay on top of each other but are shifted by half a latti
constant, as in Fig. 5, the motion of a domain wall does
cost any energy, and we retrieve the exponentz52.

IV. GENERAL DIMENSIONS

In contrast to the previous discussions of 111 dimension,
in the physically more relevant case of~211!-dimensional
growth ~and more generally for the case ofd11 dimen-
sions!, critical demixing and ordering transitions generica
occur atfinite growth temperature. The anomalies due to
vanishing mobilities are no longer present, and the mobi
of a domain wall should be finite in the neighborhood of t
critical point. We therefore cannot use the method of
preceding section in order to obtain the relation between
transverse and parallel correlation lengths close to the crit
point. However, we can derive the critical exponentz using
general arguments. As before, correlations perpendicula
the growth direction are identical to those of a two-lay
system and diverge at a critical point with the exponentn of
a d-dimensional Ising system. A sequence of layers can
regarded as successive snapshots of configurations in t
Since our model satisfies detailed balance, this time sequ
corresponds to an equilibrium system. The critical behav
of equilibrium systems falls into several universality class
that are determined by symmetries and conservation la
Since there is no local conservation of spins from one la
to the next, we expect our model to be in the universa
class of an Ising system with relaxational~model A or
Glauber! dynamics. Therefore, correlations parallel t
growth direction diverge with an exponentzn, wherez is the
~Glauber! dynamic exponent of thed-dimensional Ising
model. Sincez is larger than one, correlation volumes a
prolate near the critical point. This is also true just below t
critical point, where the system has established long-ra
correlations. There, one usually defines correlation volum
for the deviation from the mean ‘‘magnetization’’~i.e., dif-
ference betweenA andB concentrations! within a domain.

Next, we derive the high- and low-temperature behavi
of our model in general dimensions. The overall probabil
for encountering a particular sequence of layers is given

P~aN ,aN21 , . . . ,a1!5WaNaN21
WaN21aN22

•••Wa2a1
. ~11!

Substituting from Eq.~1!, it follows that the numerator of the
above expression is simply the Boltzmann weight for a re
lar ferromagnetic nearest neighbor Ising model. The deno
nator is the product of factors
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55 5031MODEL FOR GROWTH OF BINARY ALLOYS WITH FAST . . .
Za[exp~1bẼa!

5(
g

exp@2b~Vag1Eg!#

5(
g

expFbJi(
i

s i
~a!s i

~g!1bJ'(̂
i j &

s i
~g!s j

~g!G ,
~12!

one for each layer. After the summation is performed,Ẽa
introduces additional interactions within layera. These in-
teractions are in general nonlocal, and involve multip
spins, rendering the problem highly anisotropic, and n
trivial.

We first estimateẼa by a high-temperature expansio
For each Ising bond appearing in Eq.~12!, we can write

exp~bJs is j !5c~11ts is j !, ~13!

wherec5cosh(bJ) and t5tanh(bJ) is the small paramete
for the high-temperature expansion. After summing over
spins in layerg, the surviving contributions toZa are repre-
sented graphically by paths connecting pairs of spins in la
a. For hypercubic layers of coordination number 2d,

Za5~cic'
d !N (

$s~g!%
)
i

~11t is i
~a!s i

~g!!)̂
i j &

~11t's i
~g!s j

~g!!

5~cic'
d !NF11(̂

i j &
t i
2t's i

~a!s j
~a!1•••G

'~cic'
d !NexpS 1t i

2t'(̂
i j &

s i
~a!s j

~a!1••• D .
After inversion, the leading effect of the denominators is
reducethe in-plane couplings tobJ'2t i

2t' . At higher or-
ders, antiferromagnetic bonds of strengtht i

2t'
s , for spins at a

distances, and multiple spin interactions are also generat
A similar high temperature expansion results in the p

pendicular and parallel correlation functions for a pair
spins at a distancel within the same plane or column,

g'~ l !.t'
l H 11

l ~ l11!

2
@2~d21!t'

21t i
2#1•••J

and

gi~ l !.t i
l @11dl~ l11!t'

21•••#.

WhenJiÞJ' , these two correlation functions differ alread
in the first term, leading to stronger correlations in the dir
tion that has the stronger coupling. WhenJi,J' , correla-
tion volumes are oblate at high temperatures and m
change their shape to prolate when the temperature is
creased and the critical point is approached.

Due to the weakening of the in-plane bonds, the two c
relation functions differ even forJi5J' , resulting in a re-
duced correlation length perpendicular to the growth dir
tion. In fact, such a weakening is precisely what is neede
make the correlations within each layer appear asd dimen-
sional, despite the (d11)-dimensional connectivity of the
-

e

er

.
-
f

-

st
e-

r-

-
to

overall system of spins. The anisotropy in correlations
amplified at lower temperatures, and ultimately they dive
with different exponents at the critical point.

At very low temperatures, there are typically few u
aligned neighbors, and in a low-temperature expansion,
~12! is evaluated as

Za'expSNbJi1bJ'(̂
i j &

s i
~a!s j

~a!D . ~14!

~The spins in layerg are assumed to be completely align
to those in layera in the configuration of lowest energy.!
Thus at this order, the effective in-plane couplings a
bJ'2bJ''0. The physical meaning of this result is that
low temperatures each new layer essentially repeats the
figuration of the previous layer. The boundaries between
ferent domains have very small mobility@of order of
exp(2bJi)#. It is this reduced mobility that leads to the un
usual critical properties of the (111)-dimensional model
discussed earlier.

V. CONCLUSIONS

In summary, we have studied a model for thin film grow
of (d11)-dimensional binary alloys that explicitly include
the relaxation and diffusion of the atoms on the top surfa
Since there is no further equilibration inside the film, t
bulk configuration reflects the time history of fluctuations
the surface. The resulting correlations are highly anisotro
within each layer, they correspond to the equilibrium on
d-dimensional system, while the behavior parallel to t
growth direction reflects the dynamics of ad-dimensional
Ising system with no conservation laws. These results
similar to previous ~cellular automata inspired! models
which include no surface equilibration. This suggests tha
wider universality is present: As long as equilibration sto
after a finite number of layers from the top surface, the ab
conclusions should hold. One exception is f
(111)-dimensional systems, which due to the vanish
mobility of domains at zero temperature, exhibit nonuniv
sal behavior.

A crucial assumption of the model is that the surface la
has sufficient time to equilibrate, before it is completed a
incorporated in the bulk. This requires that any surfa
equilibration timestR should be less than the time for th
growth of a layertG . The latter is controlled by the speed o
deposition. The former time, however, depends on the ac
dynamics at the surface. It is important to emphasize t
tR has nothing to do with the ‘‘dynamics’’ that determine th
correlations in growth direction. If the main equilibratio
mechanism is diffusion of particles on the surface,tR will be
quite long, and diverge close to a critical point, where t
system performs a continuous phase transition from a che
cally disordered state to phase separation. Thus,tR}j

'

zc ,
wherezc.z is the exponent for conservative~model B! dy-
namics. On the other hand,tR can be considerably reduced
the surface particles are allowed to desorb into the gas.
fast mixing of the vapor, it is then possible to achieve atR
that is independent of the dynamics at the surface.

If the inequalitytR,tG is violated, the most likely sce
nario is that in-plane equilibrations are frozen at some sc
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resulting in configurations similar to those obtained in
rapid quench. The situation is further complicated in the lo
temperature phase. Phase separation during depositio
sults in the coarsening of domains, as observed in exp
ments on Al-Ge@14#. Computer simulations of this proces
generate at low growth speed domains that extend into
ments along the growth direction@14#, a result also obtained
from analytical calculations@15#, and in agreement with ou
observation in Sec. IV that each new layer essentially rep
the previous layer at low temperatures.

A similar study for systems that have a continuous ph
transition from a chemically disordered to an ordered~‘‘an-
tiferromagnetic’’! phase has not yet been performed to o
knowledge. Since the dynamics for antiferromagnetic ord
ing do not require long-range transport of particles, la
correlated domains can be formed during finite time, giv
large correlations in the layer below. We therefore exp
that a small finite growth velocity does not destroy the ph
transition of ordering systems, but only shifts the critic
temperature to a lower value.
n,
-
re-
ri-

a-

ts

e

r
r-
e
n
t
e
l

All considerations so far are based on the assump
that the surface of the film is flat. It is likely that surfac
roughness and formation of domains will affect each oth
It is thus quite interesting to explore the interconnectio
between roughness and phase transitions in compo
film growth. Another complication that exists in rece
experiments on growth of Co-Pt alloys@2#, is that one of
the two components is magnetic. The additional magn
interactions provide yet another twist to this interesti
problem.
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